

SANGOLA COLLEGE, SANGOLA

Department of Computer Science and Application (Affiliated to Punyashlok Ahilyadevi Holkar Solapur University, Solapur)

B.Sc.(ECS) SANG - CET 2022

Exam Seat No.			OMR S	Sheet No.		
Exam Seat No.(In words)_	graphs berngario	rednam (8		partitor chart	hotoeleer	
Sign. of the Supervisor:		*		21 SD(5)		
Day and Date: Tuesday 05	/07/2022	Time: 11:00	AM to 12:00 PM	Λ	Maximu	m Marks: 10
General Instructions: 1. Write your Seat No. and 2. Section I- Physics, Secti 3. Choice and sequence for 4. Read each question care 5. Each question with corre 6. Each question has four a as indicated below on the Example: where (C) is the	on II- Chemistry of attempting ques efully ect response shall alternative response correct response correct response	and Section stions will be lead be awarded uses marked (see against each see.	III- Mathematics as per the convertiwo (2) marks. TA), (B), (C) and h item at given (D)	s or Biolog nience of the There shall (D). You hold sheet	y. he candid I be no n have to da	egative mark arken the circl
7. Your responses to the ite than in the circle in the (8. Use Blue ink ball pen on	OMR Sheet, it wi	icated in the sill not be eval	given OMR Shee uated.	et. If you m	nark at an	y place other
1) A 1 C1 1: 1	and K.ScO.	Section-I Pl	iysics	nos al entre Magazia	olici sal Ossii hi	So demail (E)
Angle of banking does not A) gravitational acceleration		vehicle C)	adius of curvatur	re of road	D) t	mass of vehicl
2) Water flowing in flooded	river illustrates v	which type of		8 (8	2):	indo of venior
A) turbulent flow 3) For monostomic gas, the	B) laminar flov	,	iscous flow	D)	streamli	ne flow
3) For monoatomic gas, the A) 3/5	B)5/3	clific neats C_p/C)7		D)	3/7	
4) A process in which tempe	erature remains co	onstant is cal	led as			
A) adiabatic process					isotherm	al process
5) The period of a body perf A) a/5 sec					-	
6) Beats are example of	B)5a sec	()	1/5 sec	D)	5 sec	
A) diffraction	B) interference	C) 1	oolarization	D)	reflectio	n
7) For constructive interferen						
A) $0, \frac{\pi}{2}, \pi,$	Β) 0,2π,4 π				$\frac{\pi}{4}, \frac{\pi}{2}, 3\frac{\pi}{4}$	
8) The capacity of condenser condenser is	s is 2μF.It is char	rged up to a c	harge of 100 μc.		T 4 T	
A) 0.25 X 10 ⁻⁴ J	B) 2.5X10 ⁻³ J		25X10 ⁻³ J	D)	0.25X1	$0^{-3} J$
9) The series combination of A) ohm-meter	B) ammeter	C)	potentiometer) Voltme	
10) In a moving coil galvano A) i α tanθ B)	ometer, the deflect $\alpha \theta$ C) i α		s related to electron D) $i \propto \sqrt{\theta}$	ric current	i by the r	elation

11) SI unit of magnetic field intensity is	ıe
12) In step down transformer, the secondary current is primary current. A) less than B) greater than C) equal to D) any other value of the frequency of A.C. is doubled, the reactance of inductor is A) doubled B) halved C) one third D) one fourth 14) By increasing the intensity of incident light on the surface of a metal	ıe
A) less than B) greater than C) equal to D) any other variety 13) If the frequency of A.C. is doubled, the reactance of inductor is A) doubled B) halved C) one third D) one fourth 14) By increasing the intensity of incident light on the surface of a metal	ıe
13) If the frequency of A.C. is doubled, the reactance of inductor is	
A) doubled B) halved C) one third D) one fourth 14) By increasing the intensity of incident light on the surface of a metal	
14) By increasing the intensity of incident light on the surface of a metal	
B) number of emitted electron increases	
A IX.D of photoerest and	
C) K.E & number of electrons increases D) no effect.	
15) The output of AND gate is A) Y=A.B B) Y=A+B C) Y=A+B D) Y=A.B	
A) Y=A.B	
Section-II Chemistry	
16) 2 Moles of Hydrogen gas at NTP occupy a volume of	
A) 2 L B) 11.2 L C) 22.4 L D) 44.8 L	
17) The structure of acetylene molecule is A) Tetrahedral B) Trigonal planer C) Angular D) Linear	
1 C in among (O-) is	
18) Oxidation number of oxygen in ozone (O ₃) is A) Zero B) +1 C) +2 D) +3	
19) If salt bridge is removed from two half cells the voltage	
A) Drops to zero B) does not change C) increases gradually D) increases rap	pidly
20) The unit for rate constant of first order reaction is	
20) The unit for face constant of first order reaction is	
21) Calcium format on dry distillation yields	ureY A
A) Acetone B) Formaldehyde C) Acetic Acid D) Acetaidellyd	e
22) When 2-hydroxybenzoic acid is distilled with zinc dust it gives B) benzoic acid C) benzaldehyde D) polymeric co	mnound
A) Pilelioi B) cenzere acia	mpound
23) Which of the following is not a pair of isomorphous substances? A)Cr ₂ O ₃ and Fe ₂ O ₃ B) NaNO ₃ and KCO ₃ C) K ₂ SO ₄ and K ₃ SeO ₄ D) NaF and Mg	gO O
24) Select the correct type of solution for iodine in air. A) gas in gas B) solid in gas C) gas in liquid D) gas in solid	
A) gas in gas	
25) In plants, the process of photosynthesis is	
A) an open system B) a closed system C) an isolated system D) a nomogene 26) Bond dissociation energy is minimum in	
A) F_2 B) Cl_2 C) Br_2 D) I_2	
27) The primary valency of a metal ion in K ₂ [Ni(CN) ₄] is	
A) Four B) Zero C) Two D) Six	
20) HIDAC name of text butyl alcohol is	2 01
A) Rutan-1-ol B) 2-Methyl-propan-1-ol C) 2-Methyl-propan-2-ol D) Buta	in-2-01
29) Carbon - halogen bond in alkyl halides is formed through the overlap A) SP ³ - P B) SP ³ - SP C) SP ² -P D) SP ³ -S	
A) Sr -1	
30) Most correct electronic configuration of chromium is A) [Ar]3d ³ 4s ² B) [Ar]3d ⁴ 4s ² C) [Ar]3d ⁵ 4s ¹ D)[Ar]3d ⁵ 4s ²	
A) [Al] 50 40 2) [-1] 5 1	
Section-III Maths	
31) The inverse of logical statement $p \rightarrow q$ is	∆ n
A) $\sim p \rightarrow \sim q$ B) $p \leftrightarrow q$ C) $q \rightarrow p$ D) $q \leftarrow$	7 1
$32) \frac{\cos\theta}{1+\sin\theta} = \frac{\pi}{1+\sin\theta}$	ne e el rei
	$(\frac{\pi}{4} + \theta)$

33) If $A = \begin{bmatrix} 5 & 4 \\ 4 & 3 \end{bmatrix}$, then $A^{-1} =$	New York Will no mark		Militage make
$A)\begin{bmatrix} 3 & -4 \\ -4 & 5 \end{bmatrix}$	$B)\begin{bmatrix} 3 & 4 \\ 4 & 5 \end{bmatrix}$	$C)\begin{bmatrix} -3 & 4 \\ 4 & -5 \end{bmatrix}$	$D)\begin{bmatrix} 1 & 2 \\ -3 & 2 \end{bmatrix}$
A) (1,-2), 3	the circle $x^2 + y^2 - 2x + 4y$ B) (1,2), 3	-4 = 0 are C) $(-1,2)$, 3	D) (-1,-2), 3
35) $\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = $ _	Date Hange ()		
A) 0	$B)\frac{\pi}{6}$	$C)\frac{\pi}{4}$	D) $\frac{-\pi}{4}$
		the origin and having slopes 3 C) $x^2 + 5xy + 6y^2 = 0$ D) $x^2 + 5xy + 6y^2 = 0$	
	coot of unit, then $w^2 + w^3 + w$	4 =	
A) -1	B) 1	C) 0	D) w
		vely such that $3\bar{a} + 5\bar{b} = 8\bar{c}$, the	en A divides BC.
A) externally in the ratio C) externally in the ratio		B) internally in the ratio 5:8 D) internally in the ratio 8:5	
		es given by the vectors $\hat{j} + \hat{k}$,	$\hat{k} + \hat{i}, \hat{i} + \hat{j}$ is
A) 3 cu. units	B) 4 cu. Units	C) 1 cu. Units	D) 2 cu. Units
40) If the foot of the perpend plane is	icular drawn from the origin to	to the plane is $(1,2,3)$ then the	equation of the
A) $r \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) = 1$	B) $\vec{r} \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) = 14$	C) $\vec{r} \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) = 9$ D)	$-\hat{r}\cdot\left(\hat{i}+2\hat{j}+3\hat{k}\right)=4$
		$y \le 12, 2x + 3y \le 12, x \ge 0, y \ge 0$	
A) 44	B) 54	C) 36	D) 48
42) If $y = \sqrt{\sin \sqrt{x}}$, then $\frac{dy}{dx} =$	mal constant	roing & obyened & vones &	and tooking
42) If $y = \sqrt{\sin \sqrt{x}}$, then $\frac{dy}{dx} = \cos \sqrt{x}$	ricycle -> Roon hair	COS X	$-\cos x$
ux	ricycle - Roor hair	C) $\frac{\cos x}{\sqrt{\sin x}}$	$D)\frac{-\cos x}{\sqrt{\sin x}}$
A) $\frac{\cos\sqrt{x}}{4\sqrt{x}\sin\sqrt{x}}$	$B) \frac{-\cos\sqrt{x}}{2\sqrt{\sin\sqrt{x}}}$ $\sin\frac{dy}{dx} = \underline{\qquad}.$	C) $\frac{\cos x}{\sqrt{\sin x}}$	$D) \frac{-\cos x}{\sqrt{\sin x}}$
A) $\frac{\cos\sqrt{x}}{4\sqrt{x}\sin\sqrt{x}}$ 43) If $y = \tan^{-1}\left(\frac{6x}{1-8x^2}\right)$, the	B) $\frac{-\cos\sqrt{x}}{2\sqrt{\sin\sqrt{x}}}$ en $\frac{dy}{dx} = \underline{\qquad}$		$D) \frac{-\cos x}{\sqrt{\sin x}}$
A) $\frac{\cos\sqrt{x}}{4\sqrt{x}\sin\sqrt{x}}$ 43) If $y = \tan^{-1}\left(\frac{6x}{1-8x^2}\right)$, the A) $\frac{4}{1+16x^2} - \frac{2}{1+4x^2}$	B) $\frac{-\cos\sqrt{x}}{2\sqrt{\sin\sqrt{x}}}$ $\tan\frac{dy}{dx} = \frac{1}{1+16x^2} + \frac{2}{1+4x^2}$	C) $\frac{2}{1+4x^2} - \frac{1}{1+x^2}$	$D) \frac{-\cos x}{\sqrt{\sin x}}$ $D) \frac{2}{1+4x^2} + \frac{1}{1+x^2}$
A) $\frac{\cos\sqrt{x}}{4\sqrt{x}\sin\sqrt{x}}$ 43) If $y = \tan^{-1}\left(\frac{6x}{1-8x^2}\right)$, the A) $\frac{4}{1+16x^2} - \frac{2}{1+4x^2}$ 44) Maximum area of a recta	B) $\frac{-\cos\sqrt{x}}{2\sqrt{\sin\sqrt{x}}}$ en $\frac{dy}{dx} = $. B) $\frac{4}{1+16x^2} + \frac{2}{1+4x^2}$ angle whose perimeter is given	C) $\frac{2}{1+4x^2} - \frac{1}{1+x^2}$ as 24 meters is equal to	
A) $\frac{\cos\sqrt{x}}{4\sqrt{x}\sin\sqrt{x}}$ 43) If $y = \tan^{-1}\left(\frac{6x}{1-8x^2}\right)$, the A) $\frac{4}{1+16x^2} - \frac{2}{1+4x^2}$ 44) Maximum area of a recta A) 36 m ²	B) $\frac{-\cos\sqrt{x}}{2\sqrt{\sin\sqrt{x}}}$ $\tan\frac{dy}{dx} = \frac{1}{1+16x^2} + \frac{2}{1+4x^2}$ angle whose perimeter is given B) 49 m ²	C) $\frac{2}{1+4x^2} - \frac{1}{1+x^2}$ as 24 meters is equal to C) 64 m ²	D) 81 m ²
A) $\frac{\cos \sqrt{x}}{4\sqrt{x} \sin \sqrt{x}}$ 43) If $y = \tan^{-1} \left(\frac{6x}{1-8x^2}\right)$, the A) $\frac{4}{1+16x^2} - \frac{2}{1+4x^2}$ 44) Maximum area of a recta A) 36 m ² 45) If $f(x) = 2x^2 + bx + c$	B) $\frac{-\cos\sqrt{x}}{2\sqrt{\sin\sqrt{x}}}$ en $\frac{dy}{dx} = \frac{1}{1+16x^2} + \frac{2}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{9} = \frac{1}{1+16x^2} + \frac{2}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{9} = \frac{1}{1+16x^2} + \frac{1}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{9} = \frac{1}{1+16x^2} + \frac{1}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{9} = \frac{1}{1+16x^2} + \frac{1}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{1+16x^2} + \frac{1}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{1+16x^2} + \frac{1}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{1+16x^2} + \frac{2}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{1+16x^2} + \frac{2}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{1+16x^2} + \frac{2}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{1+16x^2} + \frac{2}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{1+16x^2} + \frac{2}{1+4x^2}$ engle whose perimeter is given	C) $\frac{2}{1+4x^2} - \frac{1}{1+x^2}$ as 24 meters is equal to C) 64 m^2 or $f(1) = \frac{1}{1+x^2}$	
A) $\frac{\cos \sqrt{x}}{4\sqrt{x} \sin \sqrt{x}}$ 43) If $y = \tan^{-1} \left(\frac{6x}{1-8x^2}\right)$, the A) $\frac{4}{1+16x^2} - \frac{2}{1+4x^2}$ 44) Maximum area of a recta A) 36 m ² 45) If $f(x) = 2x^2 + bx + c$	B) $\frac{-\cos\sqrt{x}}{2\sqrt{\sin\sqrt{x}}}$ en $\frac{dy}{dx} = \frac{1}{1+16x^2} + \frac{2}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{9} = \frac{1}{1+16x^2} + \frac{2}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{9} = \frac{1}{1+16x^2} + \frac{1}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{9} = \frac{1}{1+16x^2} + \frac{1}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{9} = \frac{1}{1+16x^2} + \frac{1}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{1+16x^2} + \frac{1}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{1+16x^2} + \frac{1}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{1+16x^2} + \frac{2}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{1+16x^2} + \frac{2}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{1+16x^2} + \frac{2}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{1+16x^2} + \frac{2}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{1+16x^2} + \frac{2}{1+4x^2}$ engle whose perimeter is given	C) $\frac{2}{1+4x^2} - \frac{1}{1+x^2}$ as 24 meters is equal to C) 64 m^2 or $f(1) = \frac{1}{1+x^2}$	D) 81 m ² D) 3
A) $\frac{\cos \sqrt{x}}{4\sqrt{x} \sin \sqrt{x}}$ 43) If $y = \tan^{-1} \left(\frac{6x}{1-8x^2}\right)$, the A) $\frac{4}{1+16x^2} - \frac{2}{1+4x^2}$ 44) Maximum area of a recta A) 36 m ² 45) If $f(x) = 2x^2 + bx + c$	B) $\frac{-\cos\sqrt{x}}{2\sqrt{\sin\sqrt{x}}}$ en $\frac{dy}{dx} = \frac{1}{1+16x^2} + \frac{2}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{9} = \frac{1}{1+16x^2} + \frac{2}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{9} = \frac{1}{1+16x^2} + \frac{1}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{9} = \frac{1}{1+16x^2} + \frac{1}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{9} = \frac{1}{1+16x^2} + \frac{1}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{1+16x^2} + \frac{1}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{1+16x^2} + \frac{1}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{1+16x^2} + \frac{2}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{1+16x^2} + \frac{2}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{1+16x^2} + \frac{2}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{1+16x^2} + \frac{2}{1+4x^2}$ engle whose perimeter is given B) $\frac{4}{1+16x^2} + \frac{2}{1+4x^2}$ engle whose perimeter is given	C) $\frac{2}{1+4x^2} - \frac{1}{1+x^2}$ as 24 meters is equal to C) 64 m^2 or $f(1) = \frac{1}{1+x^2}$	D) 81 m ²
A) $\frac{\cos\sqrt{x}}{4\sqrt{x}\sin\sqrt{x}}$ 43) If $y = \tan^{-1}\left(\frac{6x}{1-8x^2}\right)$, the A) $\frac{4}{1+16x^2} - \frac{2}{1+4x^2}$ 44) Maximum area of a recta A) 36 m ² 45) If $f(x) = 2x^2 + bx + c$ A) 2 46) $\int \tan^2 x dx = \frac{1}{4x^2}$ A) $\tan x + x + c$ 47) $\int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \frac{1}{4x^2}$	B) $\frac{-\cos\sqrt{x}}{2\sqrt{\sin\sqrt{x}}}$ en $\frac{dy}{dx} = $ B) $\frac{4}{1+16x^2} + \frac{2}{1+4x^2}$ angle whose perimeter is given B) 49 m^2 and $f(0) = 3, f(2) = 1 \text{ the}$ B) 0 B) $-\cot x - x + c$	C) $\frac{2}{1+4x^2} - \frac{1}{1+x^2}$ as 24 meters is equal to C) 64 m^2 and $f(1) = \frac{1}{1}$ C) 1 C) $tanx - x + c$	D) 81 m^2 D) $-\cot x + x + c$
A) $\frac{\cos\sqrt{x}}{4\sqrt{x}\sin\sqrt{x}}$ 43) If $y = \tan^{-1}\left(\frac{6x}{1-8x^2}\right)$, the A) $\frac{4}{1+16x^2} - \frac{2}{1+4x^2}$ 44) Maximum area of a recta A) 36 m ² 45) If $f(x) = 2x^2 + bx + c$ A) 2 46) $\int \tan^2 x dx = \frac{1}{4x^2}$ A) $\int \frac{\pi}{2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \frac{\pi}{2}$ A) 0	B) $\frac{-\cos\sqrt{x}}{2\sqrt{\sin\sqrt{x}}}$ en $\frac{dy}{dx} = \frac{1}{1+16x^2} + \frac{2}{1+4x^2}$ angle whose perimeter is given B) 49 m^2 and $f(0) = 3, f(2) = 1 \text{ the}$ B) 0 B) $-\cot x - x + c$ B) $-\pi$	C) $\frac{2}{1+4x^2} - \frac{1}{1+x^2}$ as 24 meters is equal to C) 64 m^2 and $f(1) = \underline{\hspace{1cm}}$ C) 1 C) $tanx - x + c$ C) $\frac{3\pi}{2}$	D) 81 m ² D) 3
A) $\frac{\cos\sqrt{x}}{4\sqrt{x}\sin\sqrt{x}}$ 43) If $y = \tan^{-1}\left(\frac{6x}{1-8x^2}\right)$, the A) $\frac{4}{1+16x^2} - \frac{2}{1+4x^2}$ 44) Maximum area of a recta A) 36 m² 45) If $f(x) = 2x^2 + bx + c$ A) 2 46) $\int \tan^2 x dx = \frac{1}{4x^2}$ A) $\tan x + x + c$ 47) $\int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \frac{\pi}{4x^2}$ A) 0 48) The area of region bounds	B) $\frac{-\cos\sqrt{x}}{2\sqrt{\sin\sqrt{x}}}$ en $\frac{dy}{dx} = $ B) $\frac{4}{1+16x^2} + \frac{2}{1+4x^2}$ engle whose perimeter is given B) 49 m^2 , and $f(0) = 3$, $f(2) = 1$ the B) 0 B) $-\cot x - x + c$ B) $-\pi$ ded by the curve $y = \cos x$, $x = \cos x$	C) $\frac{2}{1+4x^2} - \frac{1}{1+x^2}$ a as 24 meters is equal to C) 64 m ² and $f(1) = \frac{1}{1+x^2}$ C) 1 C) $tanx - x + c$ C) $\frac{3\pi}{2}$ $tanx - ax + c$ C) $\frac{3\pi}{2}$ $tanx - ax + c$	D) 81 m^2 D) $-\cot x + x + c$
A) $\frac{\cos\sqrt{x}}{4\sqrt{x}\sin\sqrt{x}}$ 43) If $y = \tan^{-1}\left(\frac{6x}{1-8x^2}\right)$, the A) $\frac{4}{1+16x^2} - \frac{2}{1+4x^2}$ 44) Maximum area of a recta A) 36 m² 45) If $f(x) = 2x^2 + bx + c$ A) 2 46) $\int \tan^2 x dx = \frac{1}{4x^2}$ A) $\tan x + x + c$ 47) $\int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \frac{\pi}{4x^2}$ A) 0 48) The area of region bound A) 1 sq. unit	B) $\frac{-\cos\sqrt{x}}{2\sqrt{\sin\sqrt{x}}}$ en $\frac{dy}{dx} = $ B) $\frac{4}{1+16x^2} + \frac{2}{1+4x^2}$ angle whose perimeter is given B) 49 m^2 and $f(0) = 3, f(2) = 1$ the B) 0 B) $-\cot x - x + c$ B) $-\pi$ ded by the curve $y = \cos x, x = 0$ B) 4 sq. units	C) $\frac{2}{1+4x^2} - \frac{1}{1+x^2}$ a as 24 meters is equal to C) 64 m^2 and $f(1) = \underline{\qquad}$ C) 1 C) $tanx - x + c$ C) $\frac{3\pi}{2}$ = 0 and $x = \pi$ is C) 2 sq. units	D) 81 m ² D) 3 D) $-\cot x + x + c$ D) $\frac{\pi}{4}$ D) 3 sq. units
A) $\frac{\cos\sqrt{x}}{4\sqrt{x}\sin\sqrt{x}}$ 43) If $y = \tan^{-1}\left(\frac{6x}{1-8x^2}\right)$, the A) $\frac{4}{1+16x^2} - \frac{2}{1+4x^2}$ 44) Maximum area of a recta A) 36 m² 45) If $f(x) = 2x^2 + bx + c$ A) 2 46) $\int \tan^2 x dx = \frac{1}{4x^2}$ A) $\tan x + x + c$ 47) $\int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \frac{\pi}{2}$ A) 0 48) The area of region bound A) 1 sq. unit	B) $\frac{-\cos\sqrt{x}}{2\sqrt{\sin\sqrt{x}}}$ en $\frac{dy}{dx} = \frac{2}{1+16x^2} + \frac{2}{1+4x^2}$ angle whose perimeter is given B) 49 m^2 , and $f(0) = 3$, $f(2) = 1$ the B) 0 B) $-\cot x - x + c$ B) $-\pi$ ded by the curve $y = \cos x$, $x = 0$ B) 4 sq. units the differential equation $\left(\frac{d^2y}{dx^2}\right)$	C) $\frac{2}{1+4x^2} - \frac{1}{1+x^2}$ as 24 meters is equal to C) 64 m^2 or $f(1) = \underline{\qquad}$ C) 1 C) $tanx - x + c$ $C) \frac{3\pi}{2}$ $= 0 \text{ and } x = \pi \text{ is } \underline{\qquad}$ C) 2 sq. units $C) 2 \text{ sq. units}$ $C) 2 \text{ sq. units}$	D) 81 m ² D) 3 D) $-\cot x + x + c$ D) $\frac{\pi}{4}$ D) 3 sq. units
A) $\frac{\cos \sqrt{x}}{4\sqrt{x}\sin \sqrt{x}}$ 43) If $y = \tan^{-1}\left(\frac{6x}{1-8x^2}\right)$, the A) $\frac{4}{1+16x^2} - \frac{2}{1+4x^2}$ 44) Maximum area of a recta A) 36 m ² 45) If $f(x) = 2x^2 + bx + c$ A) 2 46) $\int \tan^2 x \ dx = \frac{1}{4x^2}$ A) $\int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \ dx = \frac{\pi}{2}$ A) 0 48) The area of region bound A) 1 sq. unit 49) The order and degree of A) 2, 4	B) $\frac{-\cos\sqrt{x}}{2\sqrt{\sin\sqrt{x}}}$ en $\frac{dy}{dx} = $ B) $\frac{4}{1+16x^2} + \frac{2}{1+4x^2}$ angle whose perimeter is given B) 49 m^2 , and $f(0) = 3$, $f(2) = 1$ the B) 0 B) $-\cot x - x + c$ B) $-\pi$ ded by the curve $y = \cos x$, $x = 0$ B) 4 sq. units the differential equation $\left(\frac{d^2y}{dx^2}\right)$ B) 3 , 2	C) $\frac{2}{1+4x^2} - \frac{1}{1+x^2}$ a as 24 meters is equal to C) 64 m^2 and $f(1) = \underline{\qquad}$ C) 1 C) $tanx - x + c$ C) $\frac{3\pi}{2}$ = 0 and $x = \pi$ is C) 2 sq. units	D) 81 m ² D) a D
A) $\frac{\cos\sqrt{x}}{4\sqrt{x}\sin\sqrt{x}}$ 43) If $y = \tan^{-1}\left(\frac{6x}{1-8x^2}\right)$, the A) $\frac{4}{1+16x^2} - \frac{2}{1+4x^2}$ 44) Maximum area of a recta A) 36 m² 45) If $f(x) = 2x^2 + bx + c$ A) 2 46) $\int \tan^2 x dx = \frac{1}{4x^2}$ A) $\tan x + x + c$ 47) $\int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \frac{\pi}{2}$ A) 0 48) The area of region bound A) 1 sq. unit	B) $\frac{-\cos\sqrt{x}}{2\sqrt{\sin\sqrt{x}}}$ en $\frac{dy}{dx} = $ B) $\frac{4}{1+16x^2} + \frac{2}{1+4x^2}$ angle whose perimeter is given B) 49 m^2 , and $f(0) = 3$, $f(2) = 1$ the B) 0 B) $-\cot x - x + c$ B) $-\pi$ ded by the curve $y = \cos x$, $x = 0$ B) 4 sq. units the differential equation $\left(\frac{d^2y}{dx^2}\right)$ B) 3 , 2	C) $\frac{2}{1+4x^2} - \frac{1}{1+x^2}$ as 24 meters is equal to C) 64 m^2 or $f(1) = \underline{\qquad}$ C) 1 C) $tanx - x + c$ $C) \frac{3\pi}{2}$ $= 0 \text{ and } x = \pi \text{ is } \underline{\qquad}$ C) 2 sq. units $C) 2 \text{ sq. units}$ $C) 2 \text{ sq. units}$	D) 81 m ² D) 3 D) $-cotx + x + $ D) $\frac{\pi}{4}$ D) 3 sq. units sectively

Section-III Biology

31) Pace maker of Heart is	Section-III Biolog	Y	0
A) S A Node B) AV No	nda (1) 11	01112	
32) Rupturing of follicles and discharge	ode C) bundle o	D) Purkinje fib	ore
A) Copulation B) Capaci	of ova is known as		
33) Which of the following disease off	tation C) ovulation	n D) gestation	
33) Which of the following disease affe A) Cholera B) Tubero	ets the immune system of	lirectly?	
	ulosis C) AIDS	D) Tetanus	
34) Thermoregulatory center in the body	1S		
A) hypothalamus B)Cerebel	lum C) Spinal ca	ard D) Pituitary	
35) Interaction in which one species ben called	efits and other is neither	harmed nor benefitted such interaction	
A) Mutualism B) Compe			
36) The connecting 1:-1	ition C) Commen	parasitism D) Parasitism	
36) The connecting link between ape and	man is) = Martin	
A) Dryopithecus B) Austral	opithecus C) Homoere	cetus D)Homo-neanderthalen	agia
is sound producing orga	n.	- y o mounder thaten	1515
A) Tonsils B) Pharyn	C) Larynx	D) Trachea	
38) chromosomes appears ' A) Telocentric B) A cross	V' shaped during A . 1	ase D) Hachea	
39) The sum total of genes of all individu	als of interhoseding	tric D) Sub meta centric	
A) gene frequency B) gene mu	tation C) gen flow	nenderian population is called	
40) How many pollengrains produced by	25 microspore mothers	D) gene pool	
A) 25 B) 100	C) 75		
41) In DNA segment amount of Adenine	is 20 find and	D) 50	
A) 10 B) 20	out amount of	cytosine.	
42) Find the path of water from soil to xy	C) 50	D) 30	
A) Soil→Root hair→cortex → and do	em.		
A) Soil→Root hair→cortex→endode B) Soil→Root hair→endodermis→Co	rinis Protoxylem > me	etaxylem	
C) Root hair → cortex→Pericycle→P	rtex Pericycle meta	xylem	
D) metaxylem > cortex > Endodermis-	Doriousle D. Alli		
43) Which of the following is non-symbio	Root hair		
A) Rhizohium D) A zatal	tic bio-fertilizer?		
A) Rhizobium B) Azotobac 44) Mushrooms are rich in	ter C) Anabaena	D)VAM	
A) Minerals and Vitamina DVE			
A) Minerals and Vitamins B)Fats	C) Carbohydra	ates D) Sugars	
45) What is molecular scissor/genetic scal	pel?		
A) Urease B) Restriction	n endonuclease C) Hel	icase D) Peptidase	
viost common plant of floating leaves	stage of hydrospre is	D) i optidase	
B)Hydrilla	CITAL		
47) What are the different parts A, B and C	in the adjacent figure?	D)Water hyacinth	
(1-Stark) (C-Head)	B) (A-Tip) (B-	rod) (C foot)	
C) (A-Cap) (B-Stalk) (C-foot)	D) (A-Head) (1	B-Stalk) (C-Base)	
48) Lactose is composed of			
A) Glucose + Fructose B) Glucose +	Glucose C) Glucoso	I Colored D. F.	
49) Which ratio is constant for DNA of a pa	rticular engoine?	+ Galactose D) Fructose + Glucose	
A - C/T + G	C) AITIC	C - Manual Action (II)	
	C) A+U/C+	D) A+G/C+T	
50) The form of biological energy used in the A) Radiant B) Electrical	C) Cl	48) The area of region bounded by the	
Kon - 199 = 0 are respectively	rugn Work	D) Mechanical	

SANGOLA COLLEGE, SANGOLA

Department of Computer Science and Application (Affiliated to Punyashlok Ahilyadevi Holkar Solapur University, Solapur)

B.Sc.(ECS) SANG - CET 2022

SET- A Answer Key

-	See.		_		1
6	0	cti	O	n.	
-	7-2		-		

Section-I			
D			
A			
В			
D			
C			
В			
В			
В			
D			
В			
A			
В			
A			
В			
A			

Section-II

Section-II				
16	D			
17	D			
18	A			
19	A			
20	A			
21	В			
22	A			
23	C			
24	В			
25	A			
26	D			
27	C			
28	C			
29	A			
30	C			
,				

Section-III

Section	11 111		0
31	A	46	С
	C	47	D
32		48	C
33	C		
34	A	49	D
35	C	50	C
36	В		
37	C		
38	C		
39	D		
40	В		
41	D		
42	A		
43	В		
44	A		
45	В		